

2.4m Space Telescopes

Hardware Summary

November 20, 2012

Hardware Summary

- Available Flight Hardware
 - > Two, 2.4m, two-mirror telescopes
 - > One completed with full thermal hardware
 - > Electronics & Actuators have been harvested but can be rebuilt to existing drawings
 - > Two outer barrel assemblies
 - > One fully completed with thermal blankets and butterfly doors
 - > One hardware radiator/electronics bays
 - > Aluminum structures for radiator and electronic attachment
 - > Acted as a "spacer" between the spacecraft and the outer barrel assembly
- All ground support equipment for alignment, integration, and test

Robust traceability has been retained for all flight hardware

Hardware

Outer Barrel Assembly (OBA)

2 Assemblies Available

Telescope Subsystem (TSS)

2 Assemblies Available

Payload Radiator Subsystem (PLRSS)

1 Assembly Available

Forward Optics Assembly (FOA) Configuration

2.4m Space Telescope Form

Optical Form: 2 Mirror, f/8

• Aperture: 2.37m

Unvignetted Field of View: ~ 1.8^o Dia.

Wavefront Quality: <60 nm rms

Secondary Mirror Assembly Control –

• 6 DOF plus fine focus

 6 DOF Actuators are at the base of the secondary struts

Focus actuator is behind the SMA

Mass: 840kg

Back Focus: 1.2m behind PM Vertex

Outer Barrel Assembly

- Thermal Protective Enclosure including Two Actuated Thermal Butterfly Doors
- Composite Structure
- Full MLI blanket set also completed
- Mass: 280kg (without blankets)
- Mounting: Requires Interim Structure connected to Spacecraft Interface

System Obstruction

Mirror Quality and Coating

Primary Mirror (~40kg/m²)

Clear Aperture: 2.37m OD, 0.7m ID

Surface Quality: 12nm rms*

Form: Concave, F/1.2

Mirror Coating: Protected Silver

Secondary Mirror

Clear Aperture: 0.53m OD, 0.02m ID Form: Convex

Surface Quality: 16nm rms Mirror Coating: Protected Silver

^{*} To be verified with updated modeling techniques

PM Surface Figure Error at 250 K

		Residual Surface Error (nm)	
Load Case *	Power (nm)	rms	P-V
-43K Isothermal	207	7	65
1K Axial Gradient and -43K Isothermal	-229	7	52
1K Diametrical Gradient and -43K Isothermal	-78	6	56
1K Radial Gradient and -43K Isothermal	-52	7	51

Note: Surface figure error from rigid body motion due to gradients across the telescope composite structures are negligible

Primary Mirror performance is very stable over temperature range of interest

^{* 230}K CTE Value used for conservatism

PM Surface Figure – Best Fit Plane minus Power due to -43K (293-250K) Temperature Delta

Surface Error

65nm P-V 7nm RMS

Telescope Thermal Configuration

- Cold biased design Outer Barrel Assembly (OBA) serves as a passively cooled radiative enclosure to attenuate environment changes.
- Heaters control telescope: Aft Metering Structure (AMS), Forward Metering Structure (FMS), Secondary Mirror Assembly (SMA), Secondary Mirror Support Tubes (SMST)
 - Minimize radial and diametrical gradients near PMA
 - Independent prime, redundant, and survival heaters
 - Control telemetry for each heater zone
 - Prime & redundant for computer-based control
 - Autonomous hybrid heater controllers (HHC) for survival
 - OBA heater control located on door mechanism only
- MLI on FMS, SMA, OBA OD, SMST surfaces away from PM

Heater Zones by Region (Prime Side Only)				
Heater Location	# of Zones	Capacity (Watts)		
AMS	24	102		
FMS	21	100		
SMST	12	106		
SMA	5	25		

ITT Exelis State of the Art Material Technology Utilized to Provide Stable Telescope

Hybrid Laminates with low CTE, low CME, and high modulus (patented)

> 0 CTE (0.0 ± 0.1 μin/in°F) in all inplane directions

Cyanate Siloxane Resin with low moisture uptake (ITT/Hexcel development)

Hygro strain < 15 μin/in

Invar Fittings where required for stability

- > CTE: $< 0.4 \mu in/in^{\circ}F$
- > Temporal Stability (Invar growth): < 2 ± 1 µin/in/yr

Thermal Operating Considerations

- Telescope system was designed to operate around 293K (Room Temperature)
 - Does not require requalification for warm launch
- Various material considerations influence using the system at colder temperatures
 - Mirror Materials
 - Corning ULE™ is optimized for room temperature applications
 - ULE™ has been tested at 20K with degraded CTE characteristics
 - Structures
 - Laminate optimized for room temperature application
 - CTE characteristics degrade slowly so some level of off-nominal conditions would be acceptable
 - Coupon testing required to validate performance at 250K
 - Bonding Materials
 - GE RTV-566 used to attach mirrors to mounts; qualification required for nominal temperatures
 - Mechanisms
 - Precision mechanism pre-load and lubrication optimized for room temperature;
 pre-load adjustment and alternate lubrication may be required

Re-Use Considerations

- Telescope system designed for room temperature operation
 - Off optimal thermal configuration possible with some level of analysis and retest
 - Consideration of material response, electronic performance, and optical performance required for operating temperatures around 250K
- Some minor rework on the telescope is very low risk
 - Telescopes were designed to be taken apart and refurbished
 - Facilities and support equipment available to test, figure, and recoat PM & SM
- Instrument section is the most doubtful of the configuration
 - Aluminum and heavy
 - Designed for a specific instrument accommodation
 - Not a cost driver to replace with a better form factor
- Outer Barrel Assembly is likely shorter than desired for NASA mission
 - Extension and repositioning is low cost and low risk
- Point of Contact

Dr. Jennifer Dooley – JPL

Jennifer.A.Dooley@jpl.nasa.gov

Reuse Preliminary Assessments:

Complete:

- On-going stewardship of the hardware and documentation
- PM Surface figure error predictions at 250K (presented)
- Mechanical ICD for Aft Metering Structure

Ongoing and Planned Work:

- Retrieve and organize specifications, budgets, models, drawings, test results, and tech notes
- Baffles analysis and design considerations
- Actuators analyze design to enable performance at lower operational temperatures
- Electronics review board level function applicability
- Structures coupon level testing to verify performance at lower temperatures
- PM, SM Mirror performance update performance results for colder operating temperatures with current modeling tools

AMS Fitting Identification

Mechanical ICD

	Location (inches)	
	Х	Υ
Main Mount Fitting 1	49.524	0.000
Main Mount Fitting 2	-24.762	-42.889
Main Mount Fitting 3	-24.762	42.889
Turtle Tail Fitting 1	-44.519	-11.299
Turtle Tail Fitting 2	-68.750	0.000
Turtle Tail Fitting 3	-44.519	11.299
Package Fitting 1	37.584	-13.883
Package Fitting 2	1.958	-44.774
Package Fitting 3	-39.762	-20.794
Package Fitting 4	37.584	13.883
Package Fitting 5	1.958	44.774
Package Fitting 6	-39.762	20.794

Approximate hang weight capability (launch, instrument(s) configuration dependent):

Package Fittings 1-6: 2,000 lbf Turtle Tail Fittings 1-3: 500 lbf

